MathVantage	А	lgebra	I - Exam 3	Exam Number: 022
	PAR	XT 1:	QUESTIONS	
Name:		Age	: Id:	Course:
Algebra I - Exa	am 3		Lesson: 7-9	
Instructions:			Exam Strategies to	get the best performance:
• Please begin by printing your Name, y	our Age,		• Spend 5 minutes read	ding your exam. Use this time
your Student Id , and your Course Nar	ne in the b	ox	to classify each Ques	stion in (E) Easy, (M) Medium,
above and in the box on the solution s	heet.	and (D) Difficult.		
• You have 90 minutes (class period) for	r this exam	• Be confident by solving the easy questions first then the medium questions.		
• You can not use any calculator, compu	iter,			
cellphone, or other assistance device of	on this exar	n.	• Be sure to check each	h solution. In average, you
However, you can set our flag to ask p	ermission	to	only need 30 seconds	s to test it. (Use good sense).
consult your own one two-sided-sheet	notes at ar			
point during the exam (You can write	concepts,		• Don't waste too much	h time on a question even if
formulas, properties, and procedures,	but questio	ns	you know how to sol	ve it. Instead, skip the
and their solutions from books or prev	ious exam	S	question and put a ci	rcle around the problem
are not allowed in your notes).			number to work on it	t later. In average, the easy and

- Each multiple-choice question is worth 5 points and each extra essay-question is worth from 0 to 5 points. (Even a simple related formula can worth some points).
- Set up your flag if you have a question.
- Relax and use strategies to improve your performance.

 Solving the all of the easy and medium question will already guarantee a minimum grade. Now, you are much more confident and motivated to solve the difficult or skipped questions.

medium questions take up half of the exam time.

• Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

1. Given: $I. (b^m)^n = b^{m*n}$ $\sqrt{3^x} = 3^{\frac{1}{2}}$ II. $b^0 = 1$ $3^{\frac{x}{2}} = 3^{\frac{1}{2}}$ III. $(ab)^m = a^m * b^m$ x = 1a) Only I is correct. b) Only II is correct. c) Only III is correct. d) I, II, and III are correct. e) None of the above. Solution: d I and III are exponential properties and II is an exponential definition. 2. Solve: $64^x = \frac{1}{4}$ a) $-\frac{1}{3}$ b) $-\frac{1}{4}$ c) $-\frac{1}{5}$ d) There is no solution. e) None of the above. Solution: a $64^x = \frac{1}{4}$ b) $S = \{0, -1\}$ c) $S = \{0, 1\}$ $(4^3)^x = 4^{-1}$ d) $S = \{0, 2\}$ $4^{3x} = 4^{-1}$ 3x = -1 $x = -\frac{1}{3}$

3. Solve: $\sqrt{3^x} = 3^{\frac{1}{2}}$

a) 0

b) 1

c) 2

- d) 3
- e) 4

Solution: b

4. Solve: $1024^x = 0.5$

a)
$$-\frac{1}{2}$$

b) $-\frac{1}{4}$
c) $-\frac{1}{5}$
d) $-\frac{1}{10}$

e) None of the above.

Solution: d

$$1024^{x} = 0.5$$
$$(2^{10})^{x} = \frac{1}{2}$$
$$2^{10x} = 2^{-1}$$
$$x = -\frac{1}{10}$$

5. Solve: $9^x - 10(3^x) + 9 = 0$. The solutions are:

a)
$$S = \{0, -2\}$$

- e) None of the above.

Solution: d

$$9^{x} - 10(3^{x}) + 9 = 0$$

(3^x)² - 10(3^x) + 9 = 0
y = 3^x
y² - 10y + 9 = 0 (a = 1, b = -10, and c = 9)

$$S = \frac{-b}{a} \Rightarrow S = \frac{-(-10)}{1} \Rightarrow S = 10$$

$$P = \frac{c}{a} \Rightarrow P = \frac{9}{1} \Rightarrow P = 9$$

$$QuickTest: +1 +9 +3 +3$$

$$y = 1 \quad \text{or} \quad y = 9$$

$$3^{x} = 3^{0} \qquad 3^{x} = 3^{2}$$

$$x = 0 \qquad x = 2$$
Thus, $S = \{0, 2\}$
6. Solve: $3^{x-5} < 3^{7-3x}$
a) $S = \{x \in \mathbb{R}/x < 2\}$
b) $S = \{x \in \mathbb{R}/x < 2\}$
b) $S = \{x \in \mathbb{R}/x < 3\}$
c) $S = \{x \in \mathbb{R}/x < 4\}$
d) $S = \{x \in \mathbb{R}/x < 5\}$
e) None of the above.
Solution: b
$$3^{x-5} < 3^{7-3x}$$

$$x - 5 < 7 - 3x$$

$$4x < 12$$

$$x < 3$$
Thus, $S = \{x \in \mathbb{R}/x < 3\}$
7. Solve: $(\frac{1}{20})^{x^{2}} \le (\frac{1}{20})^{4x}$
a) $S = \{x \in \mathbb{R}/x \le 0 \text{ or } x \ge 2\}$
b) $S = \{x \in \mathbb{R}/x \le 0 \text{ or } x \ge 3\}$
c) $S = \{x \in \mathbb{R}/x \le 0 \text{ or } x \ge 3\}$
c) $S = \{x \in \mathbb{R}/x \le 0 \text{ or } x \ge 3\}$
c) $S = \{x \in \mathbb{R}/x \le 0 \text{ or } x \ge 3\}$
c) $S = \{x \in \mathbb{R}/x \le 1\}$
d) $S = \{x \in \mathbb{R}/x \le 1\}$
e) None of the above.
Solution: e

 $\left(\frac{1}{20}\right)^{x^2} \le \left(\frac{1}{20}\right)^{4x}$ $x^2 \ge 4x$ $x^2 - 4x \ge 0$ $x(x - 4) \ge 0$

+ - + 0 4 \uparrow 5

Thus, $S = \{x \in \mathbb{R} | x \le 0 \text{ or } x \ge 4\}$

8. The existence conditions for $\log_{h} a$ are:

a) a < 0 and b < 0. b) a > 0 and b > 0c) a > 0, b > 0, and $a \neq 1$. d) $a > 0, b > 0, a \neq 1$, and $b \neq 1$. e) a > 0, b > 0, and $b \neq 1$.

Solution: e

The existence conditions of logarithm are a > 0, b > 0, and $b \neq 1$. For example: why is "b" different from 1? $x = \log_1 10$ $1^x = 10$ 1 = 10 (False)

9. Find $\log_{\frac{1}{25}} 125$ (Clue: "Double Jump")

Solution: b

 $= \log_{\frac{1}{25}} 125 = \log_{5^{-2}} 5^3 = -\frac{3}{2}$

10. Given $\log 2 = a$ and $\log 3 = b$. Then:

I.
$$\log 6 = a + b$$

II. $\log_3 2 = \frac{a}{b}$
III. $\log 5 = 1 + a$

Then,

a) Only I and II are correct.b) Only I and III are correct..c) Only III is correct.d) Only II and III are correct.e) I, II, and III are correct.

Solution: a

I. True. $\log 6 = \log 2 * 3 = \log 2 + \log 3 = a + b$

II. True. $\log_3 2 = \frac{\log 2}{\log 3} = \frac{a}{b}$ (Change of base)

III. False. $\log 5 = \log \frac{10}{2} = \log 10 - \log 2 = 1 - a$

Thus, Only I and II are correct.

11. Solve: $\log_{\frac{1}{4}}(2-x) = \log_{\frac{1}{4}}(x-8)$ a) 1 b) 2 c) 3 d) There is no solution. e) None of the above.

Solution: d $\log_{\frac{1}{4}}(2-x) = \log_{\frac{1}{4}}(x-8) ; \text{ Existence } \begin{cases} 2-x > 0 \\ x-8 > 0 \end{cases}$ 2-x = x-8 -x-x = -8-2 -2x = -10 $x = \frac{-10}{-2}$ x = 5 (Discarded)

Check: $\begin{cases} 2 - (5) < 0\\ (-5) - 8 < 0 \end{cases}$

Thus, $S = \emptyset$.

12. Solve: $\log_2(3x - 10) = \log_2(2 - x)$.

a) There is a solution, but it is impossible to solve without a calculator or computer.
b) There is no solution.
c) 1
d) 2
e) None of the above.

Solution: b

$$\log_{2}(3x - 10) = \log_{2}(2 - x) ; \text{ Existence } \begin{cases} 3x - 10 > 0 \\ 2 - x > 0 \end{cases}$$

$$3x - 10 = 2 - x$$

$$3x + x = 2 + 10$$

$$4x = 12$$

$$x = \frac{12}{4}$$

$$x = 3 \text{ (Discarded)}$$
Check:
$$\begin{cases} 3(3) - 10 < 0 \\ 2 - (3) < 0 \end{cases}$$
Thus, $S = \emptyset$
13. Solve: $\log_{3}(3x - 6) \le \log_{3} 2$
a) $S = \{x \in \mathbb{R}/2 < x \le 3\}$
b) $S = \{x \in \mathbb{R}/2 < x \le 3\}$
c) $S = \{x \in \mathbb{R}/x < 2 \text{ or } x \ge 3\}$
c) $S = \{x \in \mathbb{R}/x < 2 \text{ or } x \ge 3\}$
c) $S = \{x \in \mathbb{R}/x < 2\}$
e) None of the above.
Solution: e
$$\log_{3}(3x - 6) \le \log_{3} 2$$
Existence Condition:
$$3x - 6 > 0 \Rightarrow 3x > 6 \Rightarrow x > 2$$
Solving we have:
$$3x - 6 \le 2 \Rightarrow 3x \le 8 \Rightarrow x \le \frac{8}{3}$$
Thus, $S = \{x \in \mathbb{R}/2 < x \le \frac{8}{3}\}.$

14. Solve: $(\log_2 x)^2 - 4(\log_2 x) + 3 = 0$

- a) $S = \{2\}$
- b) $S = \{8\}$
- c) $S = \{2, 8\}$
- d) There is no solution.
- e) None of the above.

Solution: c

 $(\log_2 x)^2 - 4(\log_2 x) + 3 = 0$

Existence Condition: x > 0

then, $y = \log_2 x$

 $y^{2} - 4y + 3 = 0 \qquad (a = 1, b = -4, \text{ and } c = 3)$ $S = \frac{-b}{a} \Rightarrow S = \frac{-(-4)}{1} \Rightarrow S = 4$

 $P = \frac{c}{a} \Rightarrow P = \frac{3}{1} \Rightarrow P = 3$

$$QuickTest:+1+3$$

 y = 1 or
 y = 3

 $\log_2 x = 1$ $\log_2 x = 3$
 $\log_2 x = \log_2 2$ $\log_2 x = \log_2 8$

 x = 2 x = 8

Thus, $S = \{2, 8\}$.

15. Let |x| be the absolute value of $x \in \mathbb{R}$.

I.
$$|x| = \begin{cases} x \text{ for } x \ge 0 \\ -x \text{ for } x < 0 \end{cases}$$

II. $\left| \frac{xy}{z} \right| = \frac{|x||y|}{|z|}$

III.
$$|x| = (\sqrt{x})^2$$
; for $x \in \mathbb{R}$.

- a) II and III are correct.b) I and III are correct.c) Only III is correct.d) I, II, and III are correct.
- e) None of the above.

Solution: e

I. True.

Absolute value definition.

II. True.

Combine the following properties. 1) |xy| = |x||y|2) $|\frac{x}{y}| = \frac{|x|}{|y|}$

III. False.

 $\sqrt{x} \notin \mathbb{R} \text{ for } x < 0$

16. Solve: |2x - 3| = 5

a) S = {-2, -1}
b) S = {1, 4}
c) S = {-8, -1}
d) S = {-1, 4}
e) None of the above.

Solution: d

2x - 3 = 5	or	2x - 3 = 5
2x - 3 = 5		2x = -5 + 3
2x = 5 + 3		2x = -2
2x = 8		$x = \frac{-2}{2}$
$x = \frac{8}{2}$		x = -1
x = 4		

Thus, $S = \{-1, 4\}$.

Then:

17. Solve: |x + 1| = |1 - x|

a) $S = \{-7, 1\}$ b) $S = \{-\frac{1}{3}, 4\}$ c) $S = \{1, 2\}$ d) $S = \{-3, \frac{3}{2}\}$

e) None of the above.

Solution: e

|x+1| = |1-x|

x + 1 = 1 - x or x + 1 = -1 + x x + x = 1 - 1 1 = -1 (Discarded) 2x = 0x = 0

Thus, $S = \{0\}$.

18. Solve: |x + 1| = 3x - 5

a) $S = \{\frac{1}{5}\}$ b) $S = \{-\frac{8}{5}\}$ c) $S = \{-\frac{8}{3}\}$ d) $S = \{3\}$ e) None of the above.

Solution: d

|x + 1| = 3x - 5

Case 1: $x + 1 \ge 0$ |x + 1| = 3x - 5 x + 1 = 3x - 5 x - 3x = -5 - 1 -2x = -6 $x = \frac{-6}{-2}$ x = 3

Check: $(3) + 1 \ge 0$ True. Case 2: x + 1 < 0|x+1| = 3x - 5-x - 1 = 3x - 5-x - 3x = -5 + 1-4x = -4 $x = \frac{-4}{4}$ x = 1Check: (1) + 1 < 0 False. Thus, $S = \{3\}$. 19. Solve: |3x - 7| < 2a) $S = \{x \in \mathbb{R} / -1 \le x \le 4\}$ b) $S = \{x \in \mathbb{R} | x \le -\frac{2}{3} \text{ or } x \ge \frac{10}{3} \}$ c) $S = \{x \in \mathbb{R} | x \le -\frac{2}{5} \text{ or } \frac{8}{5} \}$ d) $S = \{x \in \mathbb{R} / \frac{5}{3} \le x \le 3\}$ e) None of the above. Solution: d $|3x - 7| \le 2$ -2 < 3x - 7 < 2-2 + 7 < 3x - 7 + 7 < 2 + 7 $5 \le 3x \le 9$ $\frac{5}{3} \le \frac{3x}{3} \le \frac{9}{3}$ $\frac{5}{3} \le x \le 3$

Thus, $S = \{x \in \mathbb{R} | \frac{5}{3} \le x \le 3\}.$

20. Solve: $|x - 3|^2 - |x - 3| = 0$

- a) $S = \{1, 2, 3\}$
- b) $S = \{2, 3, 4\}$
- c) $S = \{3, 4, 5\}$
- d) $S = \{4, 5, 6\}$
- e) None of the above.

Solution: b

 $|x - 3|^{2} - |x - 3| = 0$ y = |x - 3| $y^{2} - y = 0$ y(y - 1) = 0 y = 0 or y = 1 |x - 3| = 0 |x - 3| = 1 x - 3 = 0 x - 3 = 1 or x - 3 = -1 x = 3 x = 1 + 3 x = -1 + 3x = 4 x = 2

MathVantage			Algebra I - Exam 3			Exam Number: 022				
				PART 2: SOLUTIONS			Consulting			
ame:_							Age:	Id:	Course:	
Multiple-Choice Answers					swers			Extra Ques	xtra Questions	
	Questions	Α	в	с	D	E		21. Solve: $\left(\frac{1}{3}\right)^{4x-12}$	$2r^2$	
	1							21. Solve: $\left(\frac{1}{3}\right)$	2.5	
	2							Solution: $S = \{x \in$	$= \mathbb{D}/(6 < x < 2)$	
	3							Solution: $S = \{x \in$	$= \mathbb{R}/-0 \leq x \leq 2\}$	
	4							$\left(\frac{1}{3}\right)^{4x-12} \ge 3^{x^2}$		
	5									
	6							$\left(\frac{1}{3}\right)^{4x-12} \ge \left(\frac{1}{3}\right)^{-x^2}$		
	7							(3) (3)		
	8							$4x - 12 \le -x^2$		
	9									
	10							$x^2 + 4x - 12 = 0 (a$	u = 1, b = 4, and c = -12	
	11							<i>-b</i> -4		
	12							$S = \frac{-b}{a} \Rightarrow S = \frac{-4}{1} =$	$\Rightarrow S = -4$	
	13							12		
	14							$P = \frac{c}{a} \Rightarrow P = \frac{-12}{1} =$	$\Rightarrow P = -12$	
	15							u I		
	16							+1 -	12	
	17							QuickTest: +1 -		
	18							+3 -	x = 2 or $x = -6$	
	19									
	20							-	+ - +	
	Let the	is sect	ion	in bla	nk			$(x-2)(x+6) \le 0$	-6 2 ↑ 3	
				Points	Ma	x		Thus, $S = \{x \in \mathbb{R} / -6\}$	$5 \le x \le 2\}$	
	Multiple	Choice	,		100)				
	Extra F	Points			25					
	Consu	ulting			10					
	Age P	oints			25					
	Total Perf	ormand	ce		160)				

Grade

Α

22. Solve: $\log_{\frac{1}{8}} x = \log_{\frac{1}{8}}(2x + 13)$ Solution: $S = \emptyset$

 $\log_{\frac{1}{8}} x = \log_{\frac{1}{8}} (2x + 13)$ Existence Condition: $\begin{cases} x > 0\\ 2x + 13 > 0 \end{cases}$

Then, x = 2x + 13 x - 2x = 13 -x = 13x = -13 Discarded (x > 0)

Thus, $S = \emptyset$

23. Calculate P.

 $P = \log_3 9 + \log_{\frac{1}{3}} 3 + \log_9 \sqrt{3}$

Solution: $P = \frac{5}{4}$

$$P = \log_3 9 + \log_{\frac{1}{3}} 3 + \log_9 \sqrt{3}$$

$$P = \log_3 3^2 + \log_{(3^{-1})} 3 + \log_{(3^2)} 3^{\frac{1}{2}}$$

$$P = 2\log_3 3 + \frac{1}{-1}\log_3 3 + \frac{\frac{1}{2}}{2}\log_3 3$$

$$P = 2 - 1 + \frac{1}{4}$$

$$P = 1 + \frac{1}{4}$$

$$P = \frac{5}{4}$$

24. Solve: $(|2x| - 16)^2 = 0$ Solution: $S = \{-8, 8\}$ $(|2x| - 16)^2 = 0$ y = |2x| $(y - 16)^2 = 0$ y = 16 |2x| = 16 2x = 16 or 2x = -16 $x = \frac{16}{2}$ $x = -\frac{16}{2}$ x = 8 x = -8

Thus, $S = \{-8, 8\}$

25. Find a quadratic equation by using the roots $x_1 = 2$ and $x_2 = -4$.

Solution: $x^2 + 2x - 8 = 0$

Method 1: $ax^2 + bx + c = a(x - x_1)(x - x_2)$ Then, $(x - x_1)(x - x_2) = 0$ (x - 2)(x - (-4)) = 0 (x - 2)(x + 4) = 0 $x^2 + 4x - 2x - 8 = 0$ $x^2 + 2x - 8 = 0$

Method 2: $x^2 - Sx + p = 0$ (Professor Formula) $S = x_1 + x_2 \Rightarrow S = 2 - 4 \Rightarrow S = -2$ $P = x_1 \cdot x_2 \Rightarrow P = (2)(-4) \Rightarrow P = -8$

Then, $x^2 - (-2)x + (-8) = 0$ $x^2 + 2x - 8 = 0$